Substrato AlN Progressivo em sua Placa de Circuito Impresso
O substrato AlN é um material especial utilizado na fabricação de PCBs de cerâmica.
Se você estiver usando esse tipo de material para aplicações de alta frequência, como telecomunicações,
Ele funcionará melhor e isso beneficiará suas vendas.
Muitos clientes confiam no PCBTok para criar placas de circuito usando esse tipo de material há anos.
Para sua felicidade, fornecemos produtos de alta classe incomparáveis usando AlN.
Incorporar Subtratos AlN do PCBTok
Somos um fabricante líder de PCBs, incluindo PCBs feitos com material AlN. Fornecemos placas de circuito premium a preços acessíveis para você.
- Esses produtos possuem certificação IPC Classe 2 e 3 PCB.
- Serviços personalizados de design e protótipo de PCB estão disponíveis por nós.
- Antes de grandes pedidos, fornecemos uma amostra grátis mediante solicitação.
- Não há MOQ para qualquer pedido
- Nossa equipe de vendas está disponível para você XNUMX horas por dia.
Apenas PCBTok pode produzir PCBs melhores com AlN para você do que qualquer outra empresa.
Substrato AlN por Recurso
Esta placa é “nua”, o que significa que é feita inteiramente de cerâmica e não possui componentes ou roteamento. Pode ser utilizado para projetos.
Você se beneficiará do desenvolvimento rápido do protótipo de PCB quando usar material AlN confiável e sem erros em seu trabalho.
AlN é um tipo usado em PCBs de cerâmica, então eles são ocasionalmente chamados de cerâmica. No entanto, existem outros substratos cerâmicos.
AlN é um material que pode ser usado em PCBs multicamadas; particularmente na indústria de semicondutores, estas são uma escolha acessível.
Os clientes usam o material AlN principalmente por sua alta Tg, portanto, é lógico que isso seja preferido para aplicações de energia.
Os clientes que necessitam de iluminação LED devem escolher entre Núcleo de metal e AlN. Ambos são adequados para uso contínuo e de longo prazo.
O que é substrato AlN?
É um material de substrato cerâmico com as seguintes características:
- Alta condutividade térmica
- Propriedade dielétrica forte
- Fator de expansão mínimo e desejado
Devido às capacidades do AlN, ele é frequentemente selecionado em PCBs para:
Iluminação LED de alta potência, sensores, ICs e microcontroladores, RF dispositivos, etc.
A oxidação é evitada mesmo quando exposta ao calor de 137 graus Celsius.
Além disso, o material pode ser metalizado usando técnicas semelhantes às usadas com alumina e óxido de berílio.

Por que usar substrato AlN em placas de circuito?
Os clientes são atraídos pelo calor de adaptabilidade da AlN em particular. A força dele contra elementos agressivos é uma vantagem. O que eles gostam:
- 0% de absorção de água, ideal para ambientes húmidos
- Eficiência em comparação com outros substratos como FR4
- Baixo coeficiente de expansão térmica (3 a 4 ppm/C)
- Estrutura mecânica forte com valor de 450 MPa.
- Faixa de condutividade térmica (170 W/mK – 230 W/mK)
Faz sentido se você considerar o usuário típico desse substrato, como o setor de telecomunicações.
Aplicações do Substrato AlN
Foi mencionado anteriormente que os principais players do setor de telecomunicações usam amplamente o substrato AlN.
No entanto, existem algumas indústrias adicionais. Se você escolher um fabricante confiável, é provável que a empresa produza PCB ODM ou OEM para empresas dos seguintes setores:
- Uma variedade de militar dispositivos
- Equipamento aeroespacial e de voo
- Backplanes ou PCBs que conectam outros PCBs
- Computador módulos de memória
- Ferramentas médicas altamente complexas e simples
- Módulos de iluminação e exibição por causa do alto calor envolvido nele

Um fornecedor confiável de PCB de substrato AlN


Na PCBTok, fabricamos PCBs com cuidado e precisão usando um processo de fabricação exclusivo.
A maioria dos consumidores, industrial, e os produtos eletrônicos médicos são construídos em flexível e rígida-flex tipos de poliimida.
Começamos escolhendo o melhor material ecologicamente correto para o seu projeto.
A PCBTok orgulham-se de produzir PCBs do mais alto calibre disponível. Todos os nossos produtos são habilmente feitos e cobertos por uma garantia de satisfação.
Fabricação de PCB de Substrato AlN
Apesar de parecer caro, este material é realmente acessível devido ao seu alto nível de eficiência. Considere o seguinte:
- O material AlN é mecanicamente robusto, além de ser resistente ao calor. Tem uma vasta gama de aplicações.
- Torna-se um condutor de cobre superior, particularmente quando DPC O processamento cerâmico é aplicado.
- Comparado ao Óxido de Berílio (BeO), é um bom substituto porque segue restrições de segurança ambiental.
- Além disso, possui notável capacidade de isolamento, evitando o contato acidental com outras superfícies de PCB.
Substratos AlN são usados na indústria de semicondutores porque podem funcionar mesmo quando expostos ao uso diário e/ou uso ininterrupto.
Tenha em mente que o AlN também é um tipo de PCB de cerâmica.
Assim, dois dos quatro processos usados para criar PCBs cerâmicos são DBC Processamento Cerâmico e Processamento DPC.
O LTCC (Co-queima de Baixa Temperatura) e o HTCC (Co-queima de Alta Temperatura) são os outros dois processos adicionais. Lembrete para embalagem: Os materiais AlN são muito fotossensíveis. Para a cobertura final, o item precisa ser bem protegido da luz solar.
Detalhes da produção de PCB de substrato AlN como acompanhamento
- Unidade de Produção
- Capacidades de PCB
- método de envio
- Métodos de Pagamento
- Envie-nos uma pergunta
NÃO | item | Especificação técnica | ||||||
Standard | Avançado | |||||||
1 | Contagem de Camadas | Camadas 1-20 | 22-40 camada | |||||
2 | Material base | KB 、 Shengyi 、 ShengyiSF305 、 FR408 、 FR408HR 、 IS410 、 FR406 、 GETEK 、 370HR 、 IT180A 、 Rogers4350 、 Rogers400 、 Laminados de PTFE (laminados série Rogers series série Taconic 、 série Arlon series série Arlon 、 IT4A 、 Rogers4350 、 Rogers4 、 laminados PTFE (laminados série Rogers 、 série Taconic 、 série Arlon 、 série Arlon / Nelco / Rogers Nelco) -XNUMX material (incluindo laminação parcial de híbrido RoXNUMXB com FR-XNUMX) | ||||||
3 | Tipo PCB | PCB rígido/FPC/Flex-Rígido | Backplane, HDI, PCB cego e enterrado de várias camadas, Capacitância incorporada, Placa de resistência incorporada, PCB de alta potência de cobre, Backdrill. | |||||
4 | Tipo de laminação | Cego&enterrado por tipo | Vias mecânicas cegas e enterradas com menos de 3 vezes laminação | Vias mecânicas cegas e enterradas com menos de 2 vezes laminação | ||||
PCB HDI | 1 + n + 1,1 + 1 + n + 1 + 1,2 + n + 2,3 + n + 3 (n vias enterradas ≤ 0.3 mm), via cega a laser pode ser revestimento de preenchimento | 1 + n + 1,1 + 1 + n + 1 + 1,2 + n + 2,3 + n + 3 (n vias enterradas ≤ 0.3 mm), via cega a laser pode ser revestimento de preenchimento | ||||||
5 | Espessura terminada da placa | 0.2-3.2mm | 3.4-7mm | |||||
6 | Espessura Mínima do Núcleo | 0.15mm (6mil) | 0.1mm (4mil) | |||||
7 | Espessura de cobre | Min. 1/2 OZ, máx. 4 OZ | Min. 1/3 OZ, máx. 10 OZ | |||||
8 | Parede PTH | 20um (0.8mil) | 25um (1mil) | |||||
9 | Tamanho máximo da placa | 500 * 600 mm (19 "* 23") | 1100 * 500 mm (43 "* 19") | |||||
10 | Buraco | Tamanho mínimo de perfuração a laser | 4 mil | 4 mil | ||||
Tamanho máximo de perfuração a laser | 6 mil | 6 mil | ||||||
Proporção máxima para placa de furo | 10:1(diâmetro do furo>8mil) | 20:1 | ||||||
Relação de aspecto máxima para laser via chapeamento de enchimento | 0.9:1 (profundidade incluída espessura de cobre) | 1:1 (profundidade incluída espessura de cobre) | ||||||
Proporção máxima para profundidade mecânica- placa de perfuração de controle (profundidade de perfuração do furo cego/tamanho do furo cego) |
0.8:1 (tamanho da ferramenta de perfuração≥10mil) | 1.3:1(tamanho da ferramenta de perfuração≤8mil),1.15:1(tamanho da ferramenta de perfuração≥10mil) | ||||||
Min. profundidade de controle mecânico de profundidade (broca traseira) | 8 mil | 8 mil | ||||||
Espaço mínimo entre a parede do furo e condutor (Nenhum cego e enterrado via PCB) |
7mil(≤8L),9mil(10-14L),10mil(>14L) | 5.5mil(≤8L),6.5mil(10-14L),7mil(>14L) | ||||||
Espaço mínimo entre o condutor da parede do furo (cego e enterrado via PCB) | 8mil (1 vezes laminação), 10mil (2 vezes laminação), 12mil (3 vezes laminação) | 7mil (1 vez de laminação), 8mil (2 vezes de laminação), 9mil (3 vezes de laminação) | ||||||
Gab mínimo entre o condutor da parede do furo (buraco cego a laser enterrado via PCB) | 7mil(1+N+1);8mil(1+1+N+1+1 or 2+N+2) | 7mil(1+N+1);8mil(1+1+N+1+1 or 2+N+2) | ||||||
Espaço mínimo entre os orifícios do laser e o condutor | 6 mil | 5 mil | ||||||
Espaço mínimo entre as paredes do furo em uma rede diferente | 10 mil | 10 mil | ||||||
Espaço mínimo entre as paredes do furo na mesma rede | 6mil (thru-hole & laser hole pcb), 10mil (mecânico cego e enterrado pcb) | 6mil (thru-hole & laser hole pcb), 10mil (mecânico cego e enterrado pcb) | ||||||
Espaço mínimo bwteen paredes de furos NPTH | 8 mil | 8 mil | ||||||
Tolerância da localização do furo | ± 2mil | ± 2mil | ||||||
Tolerância NPTH | ± 2mil | ± 2mil | ||||||
Tolerância de furos de ajuste de pressão | ± 2mil | ± 2mil | ||||||
Tolerância de profundidade do escareador | ± 6mil | ± 6mil | ||||||
Tolerância do tamanho do furo escareado | ± 6mil | ± 6mil | ||||||
11 | Almofada (anel) | Tamanho mínimo da almofada para perfurações a laser | 10mil (para 4mil via laser),11mil (para 5mil via laser) | 10mil (para 4mil via laser),11mil (para 5mil via laser) | ||||
Tamanho mínimo da almofada para perfurações mecânicas | 16mil (perfurações de 8mil) | 16mil (perfurações de 8mil) | ||||||
Tamanho mínimo da almofada BGA | HASL: 10mil, LF HASL: 12mil, outras técnicas de superfície são 10mil (7mil é ok para flash gold) | HASL:10mil, LF HASL:12mil, outras técnicas de superfície são 7mi | ||||||
Tolerância do tamanho da almofada (BGA) | ± 1.5 mil (tamanho da almofada ≤ 10 mil); ± 15% (tamanho da almofada > 10 mil) | ± 1.2 mil (tamanho da almofada ≤ 12 mil); ± 10% (tamanho da almofada ≥ 12 mil) | ||||||
12 | Largura/Espaço | Camada Interna | 1/2OZ: 3/3mil | 1/2OZ: 3/3mil | ||||
1oz: 3/4mil | 1oz: 3/4mil | |||||||
2oz: 4/5.5mil | 2oz: 4/5mil | |||||||
3oz: 5/8mil | 3oz: 5/8mil | |||||||
4oz: 6/11mil | 4oz: 6/11mil | |||||||
5oz: 7/14mil | 5oz: 7/13.5mil | |||||||
6oz: 8/16mil | 6oz: 8/15mil | |||||||
7oz: 9/19mil | 7oz: 9/18mil | |||||||
8oz: 10/22mil | 8oz: 10/21mil | |||||||
9oz: 11/25mil | 9oz: 11/24mil | |||||||
10oz: 12/28mil | 10oz: 12/27mil | |||||||
Camada Externa | 1/3OZ: 3.5/4mil | 1/3OZ: 3/3mil | ||||||
1/2OZ: 3.9/4.5mil | 1/2OZ: 3.5/3.5mil | |||||||
1oz: 4.8/5mil | 1oz: 4.5/5mil | |||||||
1.43OZ(positivo): 4.5/7 | 1.43OZ(positivo): 4.5/6 | |||||||
1.43OZ(negativo):5/8 | 1.43OZ(negativo):5/7 | |||||||
2oz: 6/8mil | 2oz: 6/7mil | |||||||
3oz: 6/12mil | 3oz: 6/10mil | |||||||
4oz: 7.5/15mil | 4oz: 7.5/13mil | |||||||
5oz: 9/18mil | 5oz: 9/16mil | |||||||
6oz: 10/21mil | 6oz: 10/19mil | |||||||
7oz: 11/25mil | 7oz: 11/22mil | |||||||
8oz: 12/29mil | 8oz: 12/26mil | |||||||
9oz: 13/33mil | 9oz: 13/30mil | |||||||
10oz: 14/38mil | 10oz: 14/35mil | |||||||
13 | Tolerância dimensão | Posição do furo | 0.08 (3 mils) | |||||
Largura do condutor (W) | 20% de desvio do mestre A / W |
1mil Desvio do Mestre A / W |
||||||
Dimensão contorno | 0.15 mm (6 mils) | 0.10 mm (4 mils) | ||||||
Condutores e Esboço (C-O) |
0.15 mm (6 mils) | 0.13 mm (5 mils) | ||||||
Deformar e torcer | 0.75% | 0.50% | ||||||
14 | máscara de solda | Tamanho máximo da ferramenta de perfuração para via preenchida com máscara de solda (lado único) | 35.4 mil | 35.4 mil | ||||
Cor da máscara de solda | Verde, Preto, Azul, Vermelho, Branco, Amarelo, Roxo fosco / brilhante | |||||||
Cor da serigrafia | Branco, preto, azul, amarelo | |||||||
Tamanho máximo do furo para via preenchida com cola azul de alumínio | 197 mil | 197 mil | ||||||
Tamanho do furo de acabamento para via preenchida com resina | 4-25.4mil | 4-25.4mil | ||||||
Proporção máxima para via preenchida com placa de resina | 8:1 | 12:1 | ||||||
Largura mínima da ponte de máscara de solda | Base de cobre ≤ 0.5 oz, lata de imersão: 7.5 mil (preto), 5.5 mil (outra cor), 8 mil (na área de cobre) | |||||||
Base de cobre≤0.5 oz、Acabamento de tratamento não Imersão Tin : 5.5 mil (preto, extremidade 5 mil), 4 mil (outros cor, extremidade 3.5mil), 8mil (na área de cobre |
||||||||
Base coppe 1 oz: 4mil (verde), 5mil (outra cor), 5.5mil (preto, extremidade 5mil), 8mil (na área de cobre) | ||||||||
Base de cobre 1.43 oz: 4mil (verde), 5.5mil (outra cor), 6mil (preto), 8mil (na área de cobre) | ||||||||
Base de cobre 2 oz-4 oz: 6mil, 8mil (na área de cobre) | ||||||||
15 | Tratamento da superfície | chumbo | Ouro reluzente (ouro galvanizado) 、 ENIG 、 Ouro duro 、 Ouro reluzente 、 HASL Sem chumbo 、 OSP 、 ENEPIG 、 Ouro macio 、 Prata de imersão 、 Lata de imersão 、 ENIG + OSP, ENIG + dedo de ouro, ouro reluzente (ouro eletrodepositado) + dedo de ouro , Prata de imersão + dedo de ouro, lata de imersão + dedo de ouro | |||||
Com chumbo | HASL liderado | |||||||
Proporção da tela | 10: 1 (HASL sem chumbo 、 HASL Chumbo 、 ENIG 、 Estanho de imersão 、 Prata de imersão 、 ENEPIG); 8: 1 (OSP) | |||||||
Tamanho máximo finalizado | HASL Chumbo 22″*39″;HASL Sem chumbo 22″*24″;Flash gold 24″*24″;Ouro duro 24″*28″;ENIG 21″*27″;Flash gold (ouro galvanizado) 21″*48 ″;Lata de imersão 16″*21″;Imersão prata 16″*18″;OSP 24″*40″; | |||||||
Tamanho mínimo acabado | HASL Chumbo 5″*6″;HASL Sem chumbo 10″*10″;Flash gold 12″*16″;Hard gold 3″*3″;Flash gold (ouro galvanizado) 8″*10″;Immersion Tin 2″* 4″;Immersion silver 2″*4″;OSP 2″*2″; | |||||||
Espessura de PCB | Chumbo HASL 0.6-4.0 mm; HASL sem chumbo 0.6-4.0 mm; Flash ouro 1.0-3.2 mm; Ouro duro 0.1-5.0 mm; ENIG 0.2-7.0 mm; Flash ouro (ouro galvanizado) 0.15-5.0 mm; Estanho de imersão 0.4- 5.0 mm; prata de imersão 0.4-5.0 mm; OSP 0.2-6.0 mm | |||||||
Max alto para dedo de ouro | 1.5inch | |||||||
Espaço mínimo entre os dedos de ouro | 6 mil | |||||||
Espaço mínimo do bloco para dedos de ouro | 7.5 mil | |||||||
16 | Corte em V | Tamanho do Painel | 500mm X 622mm (máx.) | 500mm X 800mm (máx.) | ||||
Espessura da placa | 0.50 mm (20mil) min. | 0.30 mm (12mil) min. | ||||||
Espessura restante | 1/3 da espessura da placa | 0.40 +/-0.10mm (16+/-4 mil) | ||||||
Tolerância | ±0.13 mm (5mil) | ±0.1 mm (4mil) | ||||||
Largura da ranhura | 0.50 mm (20mil) máx. | 0.38 mm (15mil) máx. | ||||||
sulco para sulco | 20 mm (787mil) min. | 10 mm (394mil) min. | ||||||
Groove para rastrear | 0.45 mm (18mil) min. | 0.38 mm (15mil) min. | ||||||
17 | Slot | Tamanho do slot tol.L≥2W | Ranhura PTH: L:+/-0.13(5mil) W:+/-0.08(3mil) | Ranhura PTH: L:+/-0.10(4mil) W:+/-0.05(2mil) | ||||
Ranhura NPTH(mm) L+/-0.10 (4mil) W:+/-0.05(2mil) | Ranhura NPTH (mm) L:+/-0.08 (3mil) W:+/-0.05 (2mil) | |||||||
18 | Espaçamento mínimo da borda do furo até a borda do furo | 0.30-1.60 (Diâmetro do furo) | 0.15mm (6mil) | 0.10mm (4mil) | ||||
1.61-6.50 (Diâmetro do furo) | 0.15mm (6mil) | 0.13mm (5mil) | ||||||
19 | Espaçamento mínimo entre a borda do furo e o padrão de circuito | Orifício PTH: 0.20 mm (8mil) | Orifício PTH: 0.13 mm (5mil) | |||||
Orifício NPTH: 0.18 mm (7mil) | Orifício NPTH: 0.10 mm (4mil) | |||||||
20 | Ferramenta de registro de transferência de imagem | Padrão de circuito vs. furo de índice | 0.10(4mil) | 0.08(3mil) | ||||
Padrão de circuito vs.2º furo | 0.15(6mil) | 0.10(4mil) | ||||||
21 | Tolerância de registro de imagem de frente/verso | 0.075mm (3mil) | 0.05mm (2mil) | |||||
22 | Multicamadas | Registro incorreto de camada | 4 camadas: | 0.15 mm (6 mil) máx. | 4 camadas: | 0.10 mm (4mil) máx. | ||
6 camadas: | 0.20 mm (8 mil) máx. | 6 camadas: | 0.13 mm (5mil) máx. | |||||
8 camadas: | 0.25 mm (10 mil) máx. | 8 camadas: | 0.15 mm (6mil) máx. | |||||
Min. Espaçamento da borda do furo ao padrão da camada interna | 0.225mm (9mil) | 0.15mm (6mil) | ||||||
Espaçamento Mínimo do Contorno ao Padrão de Camada Interna | 0.38mm (15mil) | 0.225mm (9mil) | ||||||
Min. espessura da placa | 4 camadas: 0.30 mm (12mil) | 4 camadas: 0.20 mm (8mil) | ||||||
6 camadas: 0.60 mm (24mil) | 6 camadas: 0.50 mm (20mil) | |||||||
8 camadas: 1.0 mm (40mil) | 8 camadas: 0.75 mm (30mil) | |||||||
Tolerância de espessura da placa | 4 camadas: +/- 0.13 mm (5mil) | 4 camadas: +/- 0.10 mm (4mil) | ||||||
6 camadas: +/- 0.15 mm (6mil) | 6 camadas: +/- 0.13 mm (5mil) | |||||||
8-12 camadas: +/-0.20mm (8mil) | 8-12 camadas: +/-0.15mm (6mil) | |||||||
23 | Resistência de isolamento | 10KΩ~20MΩ(típico: 5MΩ) | ||||||
24 | Condutividade | <50Ω (típico: 25Ω) | ||||||
25 | tensão de ensaio | 250V | ||||||
26 | Controle de impedância | ± 5ohm (< 50ohm), ± 10% (≥50ohm) |
A PCBTok oferece métodos de envio flexíveis para nossos clientes, você pode escolher um dos métodos abaixo.
1 DHL
A DHL oferece serviços expressos internacionais em mais de 220 países.
A DHL faz parceria com a PCBTok e oferece tarifas muito competitivas aos clientes da PCBTok.
Normalmente leva de 3 a 7 dias úteis para o pacote ser entregue em todo o mundo.
2.UPS
A UPS obtém os fatos e números sobre a maior empresa de entrega de pacotes do mundo e um dos principais fornecedores globais de transporte especializado e serviços de logística.
Normalmente, a entrega de um pacote na maioria dos endereços do mundo leva de 3 a 7 dias úteis.
3. TNT
A TNT tem 56,000 funcionários em 61 países.
Demora 4-9 dias úteis para entregar os pacotes nas mãos
dos nossos clientes.
4 FedEx
A FedEx oferece soluções de entrega para clientes em todo o mundo.
Demora 4-7 dias úteis para entregar os pacotes nas mãos
dos nossos clientes.
5. Ar, Mar / Ar e Mar
Se o seu pedido for de grande volume com PCBTok, você também pode escolher
para enviar via aérea, marítima / aérea combinada e marítima quando necessário.
Entre em contato com seu representante de vendas para soluções de envio.
Observação: se precisar de outros, entre em contato com seu representante de vendas para soluções de envio.
Você pode usar os seguintes métodos de pagamento:
Transferência Telegráfica (TT): Uma transferência telegráfica (TT) é um método eletrônico de transferência de fundos utilizado principalmente para transações eletrônicas no exterior. É muito conveniente transferir.
Transferencia bancária: Para pagar por transferência eletrônica usando sua conta bancária, você precisa visitar a agência bancária mais próxima com as informações da transferência eletrônica. Seu pagamento será concluído 3-5 dias úteis após você ter concluído a transferência de dinheiro.
Paypal: Pague com facilidade, rapidez e segurança com o PayPal. muitos outros cartões de crédito e débito via PayPal.
Cartão de crédito: Você pode pagar com cartão de crédito: Visa, Visa Electron, MasterCard, Maestro.
Produtos relacionados
Em termos de propriedades relevantes do substrato AlN, considere o seguinte:
Em relação às suas propriedades térmicas, possui uma condutividade térmica de 170 W/mK a 25°C e um coeficiente de expansão térmica entre 2.5 e 3.5 ppm/°C a RT 500°C.
Tem um valor de perda dielétrica de 3×10-4, uma constante dielétrica de 8 – 10, uma rigidez dielétrica > 17 KV/mm e uma resistência de volume > 1014 cm para propriedades elétricas.
Por fim, suas características mecânicas incluem uma classificação de elasticidade de 302 GPa, uma resistência à flexão de até 380 MPa e uma rugosidade superficial de 0.3 a 0.6 m.